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iquid crystal droplets, being L relatively easy to produce, 
have been of interest since the 
early days of liquid crystals. This 
interest is both scientific and 
practical. Scientifically, we would 
like to know how confinement can 
alter the macroscopic properties of 
materials previously understood 
only in the bulk. In the case of 
liquid crystal droplets, the bound- 
ary conditions are fundamentally 
incompatible with parallel orienta- 
tion in the bulk, which leads to 
topological defects in the struc- 
ture. By applying an electric field 
or increasing the chirality, the 
situation is further complicated 
and new textures with new 
defects may evolve. 

From a practical standpoint, an under- 
standing of the above processes is neces- 
sary when using droplets for applications. 
Polymer-dispersed nematic liquid crystal 

(PDLC) droplets have already been used in 
displays for a number of years. Polymer- 
dispersed chid-nematic liquid crystal 
(PDCLC) droplets, with which this review is 
concerned, can also be used in displays, 
although they utilize a different principle 
than nematic PDLCs [ I ] .  Nematic displays 
work in transmission and depend on 
refractive index matching; chiral nematic 
displays work in reflection and depend on 
the principle of selective reflection. Chiral 
nematic droplets have been studied for 
many years; however, studies of their 
behaviour under the influence of applied 
fields have been more recent. Experiment- 
ally, the situation is shown in figure 1 in 
which several large-pitch droplets of chiral 
nematic liquid crystal with negative 
dielectric anisotropy are viewed between 
crossed polarizers as an electric field is 
applied. The zero-field texture is called the 
Frank-Pryce texture, in which the helical 
axes are radial and a radial defect line can 
be seen when it is not aligned with the 
viewing direction. When an electric field is 
applied, the central region of the droplet 
takes on the more familiar planar texture in 
which the helical axis is aligned with the 
field. As the field increases, the radius of 
the central region increases correspond- 
ingly until at high field the whole droplet is 
planar. 

What is happening to the droplet 
internally as it evolves from the Frank- 
Pryce to planar texture? Recent theory has 
given an explanation, as the rest of this 
article will show. 
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Low fields 
The director fields in chiral nematic 
droplets are determined by minimizing the 
total Frank free energy, which is a sum of 
elastic, surface, and field energies. The 
importance of these contributions may be 
understood in terms of four characteristic 
lengths. The radius R of the droplet and 
pitch f of the chiral nematic liquid crystal 
are obvious. The effectiveness of surface 
anchoring is given by the extrapolation 
length b=K/W, where W is the anchoring 
strength and K is an elastic constant. For a 
nematic drop, the anchoring is strong 
when b d ;  however in a chiral nematic 
drop with f<R,  the important length is the 
pitch. Consequently when b<<P the 
anchoring is strong; when b2P the surface 
director does not completely obey the 
boundary conditions. It follows that the 
type of anchoring (weak or strong) in large 
chiral nematic droplets ( k R )  is independ- 
ent of the size of the droplet, unlike the 
case of nematics. Finally, the effect of the 
electric field is given by the coherence 

(continued on page 2) 
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length ~=[K/(E,,IE,IE~)]”~ where E is the field 
and ea is the permittivity anisotropy of the 
liquid crystal. If c<<R the field is strong 
enough to  overcome the elastic effects 
and create internal alignment. 

In zero and low electric fields (<>>R), 
stable structures are determined by the 
competition between elastic and surface 
effects only. For nematic droplets, a variety 
of structures has been predicted and/or 
observed, for example, radial and axial 
structures in the case of perpendicular 
anchoring, and bipolar in the case of 
parallel anchoring. For chiral nematic 

droplets, the set of structures is even 
richer, but we shall restrict our attention to 
the case of chiral nematic droplets with 
parallel surface anchoring and negative 
dielectric anisotropy, due to  their possible 
use in light-reflecting applications. 

Unconstrained chiral nematic liquid 
crystals organize in the planar texture, 
given by n=(cos(qz), sin(qz), 01, where the 
wave vector q=ZdP lies in the z-direction. 
Clearly the planar structure is not 
compatible with spherical confinement and 
parallel boundary conditions; this 
incompatibility leads in turn to a variety of 
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interesting director configurations A simple 
description of such complex structures is 

based on the idea of a chml  nematic 
surface, which IS defined as a surface to 
which the director field is tangent at every 
point or, equivalently, a surface to which 
the vector field q(r) is everywhere normal 
For planar chiral nematics, these surfaces 
are equidistant planes (q is a constant) In 
droplets, however, where the chiral 
surfaces are strongly curved, observations 
show that they are sti l l  nearly equidistant 
Thus, for non-planar chiral structures, the 
assumption of constant chirality Iql and 
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Agure I 
droplets subjected to increasing field From 
top to bottom 0 V, 15 V, 2 1 V, 63 V The 
sample thickness is =72 vm, the viewing 
direction is parallel to the field 

Photomicrograph of chiral nematic f/gure 3 
director configurations of the structures, the thickness of a defect line corresponds to i ts  
strength Centre simulated textures of the upper structures when viewed along the electric field 
Compare the right simulation with droplets in figure 1 The most obvious difference is due to 
different arrangement of the defect lines, the observed structure has one s=2 defect line and the 
diametrical oblate structure has two s=l defect lines Bottom aqain simulated textures, but this 
time viewed perpendicular to the field 

Theoretically predicted oblate droplets that have not been observed yet Top the 

figure 5. 
planar structures when viewed along the 
applied electric field: very weak (left) and 
infinitely strong anchoring (right). Note that 
left texture is similar to  the central texture in 
figure 1, whereas the right texture clearly 
shows the surface defect line. In both cases 
the chirality is the same qR=x. 

Simulated textures of two limiting 
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Figure 2. Observed and simulated droplet figures. Top: modelled director configuration of the 
observed oblate structures - director fields on several chiral nematic surfaces are shown 
separately. Bottom left: actual droplet observed by polarization microscopy; viewing direction is 
perpendicular to the defect line and to the electric field. One chiral nematic surface is drawn in 
white to guide the eye. Bottom right: simulated droplet in the same viewing direction; note that 
defect line is on the left side of the droplet. 

equidistant chiral nematic surfaces is a 
good one. 

In the absence of an electric field, the 
natural choice for the shape of chiral 
nematic surfaces in a spherical droplet with 
parallel surface anchoring is a sphere. 
Topology tells us, however, that a director 
field constrained to  a closed three- 
dimensional surface must contain point 
defects, the sum of whose strengths must 
equal 2. (The strength 5 of a point defect on 
a surface is defined as the number of 
rotations made by the director along a loop 
encircling the defect.) On successive chiral 
nematic surfaces, these two-dimensional 
point defects combine to form defect lines. 
The resulting director field in spherical 
coordinates reads 

n=cosRe,+sinQe$; R=(s,-l )@+Q,+qr, (1) 

where Q, is an arbitrary constant and 5, is 
the strength of the defect line along the +z 
axis. The defect line along the -z axis has 
the strength 2-5,, so spherical structures 
can be labelled with a pair of numbers (5,; 
2-5,). Of course (5,; 2-5,) and (2-5,; 50) 

represent the same spherical structure and 
a ’defect’ line of strength s=O represents a 

non-singular director field along this line 
The typical structure shown in figure 1 

(top) is the Frank-Pryce or radial spherical 
structure, denoted by (2 ;O) .  The diametrical 
spherical structure (1 ; l )  has also been 
observed, but only rarely. Given a proposed 
director structure, pictures like those in 
figure 1 can be simulated by computer. 
Comparison of simulated and observed 
polarizing microscope textures, viewed 
under different polarizations and droplet 
orientations, is an effective way to  deter- 
mine the structures of liquid crystal droplets 
(figures 2 and 3). The basic idea behind the 
simulation calculation is that the drop is 
made up of many slices of optical retarder 
whose retardance A@tr) can be calculated 
from n(r). Knowing the droplet thickness, 
the director configuration along the light 
path, the wavelength, and the orientation 
of the polarizers, the intensity of each ray 
can be calculated [2]. 

In all spherical structures the director 
rotates spatially along the radii and there is 
no macroscopically preferred direction for 
q. As a result, the droplets weakly scatter 
light regardless of their orientation, but do 
not selectively reflect a particular colour. 

Intermediate fields 

At the lowest fields, no change takes place 
in the droplet texture, but the line defect 
aligns parallel or perpendicular t o  the 
field. Once a threshold field has been 
reached ((-R), however, the texture itself 
begins t o  deform. Because of the negative 
dielectric anisotropy, the helical axes begin 
t o  align with the electric field and the 
chiral nematic surfaces become oblate or 
flattened along the field direction. Initially 
the oblateness is small, with the flat 
portion of the surfaces appearing only 
near the axis of the drop. With increasing 
field the flat central part of the droplet 
grows in a step-like fashion (see figure 4). 

An important consequence o f  the 
deformation of the n o w  oblate chiral 
nematic surfaces is the change of the 
topology. Since the outer oblate surfaces 
no longer fit completely within the sphere, 
they are cut off by the droplet border. Two 
classes of chiral nematic surfaces appear. 
The closed ones in the central part of the 
droplet have already been discussed: they 
are topologically equivalent t o  a sphere 
and they have defects whose strengths 
sum to  two. The internal parts of the cut 
off surfaces, however, are topologically 
equivalent t o  a disc with the director lying 
in the surface. The t w o  dimensional 
defects contained on such a surface 
depend on whether the directors are 
tangent to the edge of the disc, and this, 
in turn, depends on the anchoring 
strength at the droplet surface. 

If the anchoring strength is weak (b>>P), 
the directors on the boundary of the cut 
off surfaces are undetermined; they are 
simply the continuation of the inner 
director field on the closed chiral nematic 
surfaces. For strong parallel anchoring 
(b<<P), however, the cut off chiral nematic 
surfaces are equivalent to a disc with 
parallel boundary conditions at the border. 
From topology, we know that a two 
dimensional director field on a t w o  
dimensional closed surface must have 
point defects, the sum of whose strengths 
equals one. The resulting oblate surfaces 
can even have surface defect lines, which 
may become very long if the radius of the 
droplet is large compared to  the pitch. 
Structures with long surface defect lines 
have not yet been observed, probably 
because of their high elastic free energy. 
Evidently it is cheaper for the liquid crystal 
t o  violate the boundary condition than to  
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Figure 4. 
data (circles and squares) is from [3], calculations (solid line) are from [4]. Schematic presentation 
of the characteristic shape of chiral nematic surfaces and optical behaviour at certain fields is 
added; spherical structures are slightly scattering, oblate structures are partially selectively 
reflecting and partially scattering, and planar structures selectively reflect the incident light. 

Dependence of radius 6 of the flat central region on the electric field. Experimental 

pay the cost of high deformation in the 
vicinity of the defect lines. 

If the pitch is sufficiently short (P<<R), 
the flat planar region of the oblate 
structure will selectively reflect light of a 
colour corresponding to the pitch. 
Electrical control of the size of this region 
is promising for use in continuous scale 
reflective colour displays. 

High fields 
In high electric fields (€,<<P), the twist axes 
in the entire droplet become aligned by 
the electric field, the structure becomes 
planar, and the director configuration is 
controlled by the competition between 
elasticity and surface anchoring. All chiral 
nematic surfaces are topologically equival- 
ent to discs. If the anchoring is weak 
(bsR), the director field takes on the 
planar texture away from the boundary 
and is only modified by the droplet surface 
where the chiral nematic surface contacts 
the droplet boundary. Even if the 
anchoring is stronger (b<<R), the situation 
does not change much as long as the pitch 
is short (P<b). Significant changes appear 
only when the pitch is much greater than 
the extrapolation length (P>>b). In this 
case the parallel boundary conditions 
cause point defects to  appear in each 
chiral nematic surface and these defects 
combine in turn to produce line defects. 
The latter have not been observed yet, 
probably because it has not been possible 
to make the anchoring strong enough. 
Were the anchoring strong enough, one 
of the most stable planar structures would 
be the planar bipolar structure. This 
structure is characterized by two s=1/2 
surface defect spirals (figure 5). 

Applications 
Figure 6 shows a polymer-dispersed 
cholesteric liquid crystal (PDCLC) display 
[5]. When the field is off the droplets take 
on the Frank-Pryce texture and the display 
appears weakly scattering. When the field 
is on, the droplets take on the planar 
texture and selectively reflect incident 
light. The reflected light is reasonably 

Figure 6. PDCLC display. Top: with the field 
off, the droplets are in the Frank-Pryce texture 
and the display is transmitting. Bottom: with 
the field on, the droplet structure is planar 
and the display reflects monochromatic light 
of one circular polarization. 
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monochromatic and circularly polarized, 
as determined by the type of liquid crystal 
used. Note that the display is viewed in 
ordinary ambient light-neither polarizers 
nor backlighting are required. Also, as 
with nematic PDLC displays, no surface 
alignment treatment is required. 

One can think of several ways to utilize 
such a display. First it can be used as a 
black and colour display, much like 
currently-used black and white displays. 
For a multicolour reflective display, 
several colours may be stacked; red, 
green, and blue would additively mix to 
produce colours in a large fraction of the 
chromaticity diagram. If one wanted to 
reflect 100% of the light instead of the 
50% associated with one circular 
polarizaton, one could use a sandwich of 
right and left handed cholesterics. On 
the other hand there may be an 
application for a switchable circular 
polarizing filter where it is only desired to 
switch, say, right circularly polarized 
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light, leaving the left circularly polarized References 
1 light unchanged. 

The PDCLC display can also be used in 
the transmission mode. When switched 
on, the display will transmit 50% of one 
monochromatic single circular polariza- 
tion. Use of an additional circular polarizer 
will make the switching 100% and allow 
the device to be used as a switchable 
circularly polarizing filter. Note that the 
untransmitted light is scattered and not 
absorbed, which is important for heat- 
producing projection displays. For a 3 
multicoloured display, stacked colours will 
also work, but the colour mixing will be 4 
subtractive, not additive. A switchable 
100% shutter for one colour can also be 5 
constructed by stacking left and right 
handed liquid crystals, with no additional 
polarizers required. In principle, by suitable 
stacking, a 100% light shutter can be 
constructed which would switch all light 
on and off, again with no additional 
polarizers. 
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